报告题目:Nonconforming finite element Stokes complexes in three dimensions
报 告 人:黄学海 教授 上海财经大学 必发bf88唯一官方
报告时间:2020年8月24日 15:00-16:00
报告地点:腾讯会议 ID:829 618 411
会议链接:https://meeting.tencent.com/s/Gv3yDJIks4WV
校内联系人:陶詹晶 zjtao@jlu.edu.cn
报告摘要:
Two nonconforming finite element Stokes complexes ended with the nonconforming P1-P0 element for the Stokes equation in three dimensions are constructed. And commutative diagrams are also shown by combining nonconforming finite element Stokes complexes and interpolation operators. The lower order H(gradcurl)-nonconforming finite element only has 14 degrees of freedom, whose basis functions are explicitly given in terms of the barycentric coordinates. The H(gradcurl)-nonconforming elements are applied to solve the quad-curl problem, and optimal convergence is derived. By the nonconforming finite element Stokes complexes, the mixed finite element methods of the quad-curl problem is decoupled into two mixed methods of the Maxwell equation and the nonconforming P1-P0 element method for the Stokes equation, based on which a fast solver is developed.
报告人简介:
黄学海,上海财经大学必发bf88唯一官方教授、博导,毕业于上海交通大学数学系。研究方向为有限元方法,特别是高阶偏微分方程的高效数值方法。在Math. Comp.、SIAM J. Numer. Anal.、Numer. Math.、J. Sci. Comput.等国际期刊发表SCI论文二十多篇,其中ESI高被引论文1篇。科研课题方面,正主持1项国家自然科学基金面上项目,主持完成国家自然科学基金青年项目1项、数学天元项目1项和浙江省自然科学基金项目2项,参与多项国家自然科学基金面上项目和浙江省自然科学基金项目。获中国计算数学学会优秀青年论文竞赛优秀奖,博士学位论文被评为上海市研究生优秀成果(学位论文)。