当前位置: 首 页 - 科学研究 - 学术报告 - 正文

必发bf88唯一官方、所2023年系列学术活动(第107场):梅茗 教授 McGill University & Champlain College 加拿大

发表于: 2023-08-08   点击: 

报告题目:Hydrodynamic model of semiconductors with sonic boundary: structure stability and quasi-neutral limit

报告人:梅茗教授 McGill University & Champlain College 加拿大

报告时间:2023年8月15日  9:30-10:30

报告地点:腾讯会议 ID:775-702-622

校内联系人:刘长春 liucc@jlu.edu.cn


报告摘要:This talk is concerned with the structural stability of subsonic steady states and quasi-neutral limit to one-dimensional steady hydrodynamic model of semiconductors in the form of Euler-Poisson equations with degenerate boundary, a difficult case caused by the boundary layers and degeneracy. We first prove that the subsonic steady states are structurally stable, once the perturbation of doping profile is small enough. To overcome  the singularity at the sonic boundary, we introduce an optimal weight in the energy edtimates. For the quadi-neutral limit, we establish a so-called convexity structure of the sequence of subsonic-sonic solutions near the boundary domains in this limit process, which efficiently overcomes the degenerate effect.On this account, we first show the strong convergence in $L^2$ norm with the order $O(\lambda^\frac{1}{2})$ for the Debye length $\lambda$ when the doping profile is continuous. Then we derive the uniform error estimates in $L^\infty$ norm with the order $O(\lambda)$ when the doping profile has higher regularity.  


报告人简介:梅茗教授,加拿大McGill大学兼职教授及Champlain学院的终身教授,博士生导师。2015年被聘为吉林省“长白山学者”讲座教授,以及东北师范大学“东师学者”讲座教授。主要从事流体力学中偏微分方程和生物数学中带时滞反应扩散方程研究,在ARMA, SIAM  J. Math. Anal., JDE, Commun.PDEs 等高水平杂志上发表论文100多篇,是多家SCI国际数学杂志的编委。并一直承担加拿大自然科学基金项目,魁北克省自然科学基金项目,及魁北克省大专院校国际局的基金项目。