报告题目:QUADRATIC AUXILIARY VARIABLE RUNGE-KUTTA METHODS FOR THE CAMASSA-HOLM EQUATION
报 告 人:王雨顺 教授
所在单位:南京师范大学必发bf88唯一官方
报告时间:2022年11月19日 星期六 上午09:00-10:00
报告地点:#腾讯会议:390-462-731
校内联系人:邹永魁 zouyk@jlu.edu.cn
报告摘要:In this paper, we take the Camassa-Holm equation as an example to propose a novel class of Runge-Kutta methods for, which is named quadratic auxiliary variable Runge-Kutta (QAVRK) methods. We first introduce an auxiliary variable that satisfies a quadratic equation and rewrite the original energy into a quadratic functional. With the aid of the energy variational principle, the original system is then reformulated into an equivalent form with two strong quadratic invariants, where one is induced by the quadratic auxiliary variable and the other is the modified energy. Starting from the equivalent model, we employ RK methods satisfying the symplectic condition for time discretization, which naturally conserve all strong quadratic invariants of the new system. The resulting methods are shown to inherit the relationship between the auxiliary variable and the original one, and thus can be simplified by eliminating the auxiliary variable, which leads to a new class of QAVRK schemes. Furthermore, the QAVRK methods are proved rigorously to preserve the original energy conservation law. Numerical examples are presented to confirm the expected order of accuracy, conservative property and efficiency of the proposed schemes. This numerical strategy makes it possible to directly apply the symplectic RK methods to develop energy-preserving algorithms for general conservation systems with any polynomial energy.
报告人简介:南京师范大学教授、博导。长期从事保结构算法及其应用研究,主持完成6项国家基金委项目,同时作为主要成员参加科技部“863”课题、“973”项目、“863”计划、基金委重点项目,入选江苏省“333”工程、青蓝工程学术带头人、江苏省“六大人才高峰”高层次人才;江苏省创新团队主持人;获得江苏省科技进步奖,江苏省数学成就奖。专著《偏微分方程保结构算法》获得第三届中国政府出版奖-图书奖。现任期刊International Journal of Computer Mathematics、《计算数学》编委。