课程题目:REGULARITY OF STABLE SOLUTIONS TO SEMILINEAR ELLIPTIC EQUATIONS UP TO DIMENSION 9 (系列1-8)
报 告 人:Xavier Cabré 教授
所在单位:ICREA (Institució Catalana de Recerca i Estudis Avançats) & Universitat Politècnica de Catalunya
报告时间:2022年11月1日 16:00-18:00(lesson 1-2)
2022年11月3日 15:00-17:00(lesson 3-4)
2022年11月8日 16:00-18:00(lesson 5-6)
2022年11月10日 16:00-18:00(lesson 7-8)
报告地点:ZOOM ID:581 880 5979
校内联系人:魏元鸿 weiyuanhong@jlu.edu.cn
课程摘要:In this mini-course, we prove the following long-standing conjecture: stable solutions to semilinear elliptic equations are bounded (and thus smooth) in dimension n≤9. This result, that was only known to be true for n≤4, is optimal: log(1/|x|2) is a W1,2 singular stable solution for n≥10. The proof of this conjecture is a consequence of a new universal estimate: we prove that, in dimension n≤9, stable solutions are bounded in terms only of their L1 norm, independently of the nonlinearity. In addition, in every dimension we establish a higher integrability result for the gradient and optimal integrability results for the solution in Morrey spaces.
As one can see by a series of classical examples, all our results are sharp. Furthermore, as a corollary we obtain that extremal solutions of Gelfand problems are W1,2 in every dimension and they are smooth in dimension n≤9. This answers to two famous open problems posed by Brezis and Brezis-Vázquez.
报告人简介:Xavier教授主要从事偏微分方程、变分法、非线性分析及动力系统的研究。在包括Acta Math.在内的数学重要期刊上公开发表论文70余篇。